IGF1Ec expression in MG-63 human osteoblast-like osteosarcoma cells.
نویسندگان
چکیده
AIM The insulin-like growth factor 1 (IGF1) gene gives rise to multiple transcripts, using an elaborate alternative splicing mechanism. The aim of this study was to shed light on the expression and role of the IGF1 system in human MG-63 osteoblast-like osteosarcoma cells. MATERIALS AND METHODS The expression of the IGF1Ea, IGF1Eb and IGF1Ec isoforms was characterized using reverse transcription polymerase chain reaction (RT-PCR), quantitative real time-PCR (qRT-PCR) and western blot analysis. Using trypan blue exclusion assays, we also examined the mitogenic effects of IGF1 and of a synthetic peptide related to the E domain of IGF1Ec (synthetic E peptide) on MG-63 cells, as well as on MG-63 cells which had been molecularly modified to restrain the expression of type I IGF receptor (IGF1R) and of insulin receptor (INSR) by siRNA techniques (IGF1R KO or INSR KO MG-63 cells). RESULTS MG-63 cells express only the IGF1Ea and IGF1Ec transcripts. Exogenous administration of dihydrotestosterone (DHT) significantly increased the expression of IGF1Ea and IGF1Ec mRNA and it induced the previously undetectable expression of IGF1Eb transcript. Exogenous administration of IGF1, insulin and the synthetic E peptide stimulated the growth of MG-63 cells, while only E peptide stimulated the growth of IGF1R KO and INSR KO MG-63 cells. CONCLUSION These data suggest that the expression of all IGF1 isoforms is hormonally regulated in MG-63 cells and that the expression of IGF1Ec may be involved in osteosarcoma biology by generating the Ec peptide which acts via an IGF1R-independent and INSR-independent mechanism.
منابع مشابه
Selective targeting of death receptor 5 circumvents resistance of MG-63 osteosarcoma cells to TRAIL-induced apoptosis.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a tumor necrosis factor superfamily member, targets death receptors and selectively kills malignant cells while leaving normal cells unaffected. However, unlike most cancers, many osteosarcomas are resistant to TRAIL. To investigate this resistance, we characterized the response of MG-63 osteosarcoma cells and hPOB-tert osteoblast...
متن کاملBiphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress
Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether...
متن کاملRegulation of the mGluR5, EAAT1 and GS expression by glucocorticoids in MG-63 osteoblast-like osteosarcoma cells.
INTRODUCTION Growth factors, cytokines, sex steroid hormones and glucocorticoids have differential and complex effects on skeletal metabolism. Recently, the presence of the glutamatergic (Glu) system in bone cells has provided new evidence for its possible role in bone physiology. Consequently, we have investigated the regulation of certain components of the Glu system by glucocorticoids in MG-...
متن کاملBone-related growth factors and zoledronic acid regulate the PTHrP/PTH.1 receptor bioregulation systems in MG-63 human osteosarcoma cells.
Bisphosphonates are known to inhibit osteoclast-mediated bone resorption and osteoblast differentiation and are currently used in the treatment of Paget's disease, osteoporosis, metastatic and osteolytic bone disease and hypercalcaemia of malignancy. The parathyroid hormone-related peptide (PTHrP) and type 1 PTH/PTHrP receptor (PTH.1R) bioregulation systems mediate a wide range of local paracri...
متن کاملMolecular Mechanisms of Luteolin Induced Growth Inhibition and Apoptosis of Human Osteosarcoma Cells
Luteolin is a flavone in medicinal plants as well as some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential but apparently with a better safety profile. The purpose of this study was to investigate the molecular mechanism of luteolin-mediated apoptosis of MG-63 human osteosarcoma cells. MTT assay kit was employed to evaluate the effects of luteolin on MG-63 cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anticancer research
دوره 31 12 شماره
صفحات -
تاریخ انتشار 2011